
WormBase
Reimplementation

23 January 2008

What We Have Now

Hardware Platform

✓24/7/365 uptime (about)

✓Sophisticated caching/load balancing
architecture

✓Horizontal scaling to accommodate demand

Software Platform (I)

✓Monolithic CGIs in Perl

✓Fast development, few strictures

✓Many devs, many styles

✓Code degradation (eg inline evals)

✓Many hacks == many bugs

Software Platform (II)

✓Intermixed application / display logic

✓Difficult to change logic w/o breaking
display

✓Locked in to one display

✓Lots of wheel reinvention

✓Doesn’t scale well: performance or team

What We Need

✓Lean on Open Source; extend our resources

✓Flexible / Extensible / Maintainable

✓Facilitate usability and design research

✓We need a web framework

Web Frameworks

✓Make common web tasks easy:

✓forms, sessions, authentication, url mapping

✓Enforce project structure and coding style

✓Should be popular and have active
community

Due Diligence

✓Ruby on Rails

✓CGI::Application

✓Maypole

✓Catalyst

✓Reaction

Catalyst

✓Model-View-Controller separation

✓Common web tasks way easy

✓Intuitive directory layout

✓Built in test server, code profiling

✓Breaks URL -> script paradigm; URLs are
actions

Catalyst Drawbacks

✓Documentation

✓New book, mailing lists, IRC

✓*Very* flexible

✓which templating system

✓which configuration format

✓which action structure

Catalyst Advantages

✓Common tasks already solved

✓Plugin architecture

✓Code split by design

✓Scales well with multiple developers

Introduction to MVC

✓Controllers contain application logic and
handle interactions with users

✓Models interact with data stores

✓Views contain display logic

Crash Course:
Controllers

Controllers define actions

package WB::Controller::Gene;

use base ‘Catalyst::Controller’;

URL: /gene/name

sub name : Local {

my ($self,$c) = @_;

$c->stash->{name} = $c->req->params();

}

Crash Course:
Models

Models interact with datastores

package WB::Model::Gene;

use base ‘Catalyst::Model’;

Fetch the name of the object

sub name {

my ($self,$c) = @_;

my $object = $c->fetch_object($c->req->params);

return $object;

}

Crash Course:
Views

Gene Summary

<h2>[% name %]</h2>

EASY

✓Common web tasks

✓sessions, authentication, authorization, url
mapping

✓Ajax integration

✓Flexible layouts (TT, Mason, etc), multiple
formats (PDF, XML, HTML)

First Steps

✓Keeping the baby

✓Current site structure as guide

✓Sections eq Widgets

✓Subsections eq Fields

Widgets

✓Widgets correspond to sections

✓Widgets defined in configuration file

✓User-based customization for every element

✓Conditional statements in TT control display

Conversion steps

1. Add configuration for widgets and contents

2. Write simple Controller actions (for now)

3. Strip logic and move to Model::*

4. Write templates (optional)

View Granularity

✓Each page is a template

✓Each widget is a template

✓Each field is a template

✓All wrapped when rendered (minimal
buffering; Ajax)

View Features

✓Any widget/field is URL-accessible

✓Dynamic / Lazy loading

✓Multiple Formats: PDF, XML, HTML

✓Web Services: XML-RPC, SOAP, REST

e.g.: Configuration
gene => {

 widget_order => [qw/identification location expression/],

 widgets => [

 identification => [

 qw/description

 ncbi_kogs

 species

 other_sequences

 ncbi

 gene_models

 cloned_by/],

For free
actions: /gene/*/identification
views: per field, widget, page

Going Forward

End of February:
Define stash structure
CGIs->WormBase::Model

End of March
Refined Controller/View logic

Future Calls

 Documentation

 Configuration basics

 Models: structure, stash

 Controllers: dynamic actions, root actions

 Views: design decisions, flexibility

